intermolecular contact of 2.550 (4) Å between O(4) and O(2) (-0.5 + x, 1.5 - y, 1 - z), the latter atom having a deviation of 0.03 (1) Å from the mean plane of the pyridine ring to which O(4) is attached, the C(4)-O(4)...O(2) angle being 113.2 (3)°, strongly suggests the presence of an H atom associated with O(4). All attempts to locate this H atom were unsuccessful. The short intermolecular contact, 2.807 (4) Å, between N(1) and O(2) (1 - x, -0.5 + y, 1.5 - z) is a hydrogen bond, the H(1)...O(2) distance being 2.05 Å, and the N(1)-H(1)...O(2) angle 156°. The pyridine ring in the structure is essentially planar [maximum deviation of an atom from the plane is 0.008 (2) Å for N(1)], another factor in favour of the 4-enol designation (Schwalbe & Saenger, 1973). The contents of the unit cell are shown in Fig. 2.

## References

- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. A program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- ROBERTS, P. & SHELDRICK, G. M. (1975). XANADU. A program for torsion-angle, mean-plane and librational-correction calculations. Univ. of Cambridge, England.
- SCHWALBE, C. H. & SAENGER, W. (1973). Acta Cryst. B29, 61–69.SHELDRICK, G. M. (1976). SHELX76. A program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1983). C**39**, 1690–1692

## Structure of 8-Methoxy-5-oxo-6,8-diazatetracyclo[7.4.0. $0^{2,4}$ . $0^{3,7}$ ]trideca-1(9),10,12-triene-4-carboxylic Acid, $C_{13}H_{12}N_2O_4$

۲ \_\_\_\_

By I. Ueda

College of General Education, Kyushu University, Ropponmatsu, Chuo-ku, Fukuoka 810, Japan

## AND Y. KAKU, S. SAEKI AND M. HAMANA

Faculty of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812, Japan

(Received 31 May 1982; accepted 1 August 1983)

Abstract.  $M_r = 260.2$ , triclinic,  $P\overline{1}$ , a = 9.891 (3), b = 13.653 (4), c = 9.725 (3) Å, a = 105.13 (3),  $\beta = 110.23$  (2),  $\gamma = 75.95$  (2)°, V = 1172.6 (6) Å<sup>3</sup>, Z = 4,  $D_m = 1.470$ ,  $D_x = 1.422$  Mg m<sup>-3</sup>,  $\lambda$ (Mo Ka) = 0.71069 Å,  $\mu = 0.12$  mm<sup>-1</sup>, F(000) = 544, T = 293 K. Final R = 0.048 for 4686 observed reflexions. The condensed quinolinium and lactam rings form a hinge in which the three-membered ring is inserted. The carbonyl and carboxy moieties form one plane with the lactam ring via the intramolecular O...HO hydrogen bond. A tetramer is formed by the two paired intermolecular O...HN hydrogen bonds in the crystal.

**Introduction.** In the course of studies on the reactions of quinolinium salts with active methylene compounds, reaction of *N*-methoxyquinolinium perchlorate with methyl bromocyanoacetate was found to afford the title compound (E) in the yield 25.5% as shown in Fig. 1. The formation of *E* may be rationalized by the course shown also in Fig. 1. Initially, the nucleophilic attack of a carbanion of *B* on *A* gives a 1,4-dihydroquinoline (*C*). The next step is the transformation of *C* to a cyclopropane ring compound (D) by nucleophilic attack

0108-2701/83/121690-03\$01.50

of the 3-position at the side-chain C with the concerted elimination of the  $Br^-$  ion. Further, a C-N bond is formed between the quinolinium C and the N atom of the cyano group in D to produce the title product E after several steps. By an X-ray diffraction method the structure of E was determined as given in the title. The molecular structure resembles that of benzomorphans which have analgetic and antagonistic activities; however, derivatives of the title compound have little activity.



Fig. 1. Reaction scheme.

© 1983 International Union of Crystallography

**Experimental.** Colorless prisms approx.  $0.4 \times 0.5 \times 0.6$  mm, grown from ethanol. Density measured by flotation in KI solution. Single-crystal data collected on an automated Syntex  $P\overline{1}$  diffractometer, graphite-monochromatized Mo K $\alpha$ . Cell parameters determined by least squares from setting angles of 15 reflexions. 5560 reflexions measured using  $\theta-2\theta$  variable scans  $(4.8-12.0^{\circ} \text{ min}^{-1} \text{ for } 2\theta)$  up to  $2\theta = 55^{\circ}$ ; range of hkl:  $-12 \leq h \leq 12$ ,  $0 \leq k \leq 17$ ,  $-12 \leq l \leq 12$ . Three standard reflexions measured every 100 reflexions. Data corrected for geometrical factors and for monitored intensities but not for absorption. 4686 independent reflexions  $[I > 2.33\sigma(I)]$  considered observed. Structure solved by direct methods using MULTAN78 (Main, Hull, Lessinger, Germain, Declercq & Woolfson,

1978); 244 largest *E* values and six symbols used; an *E* map calculated from a phase set of highest combined figure of merit (2.60) revealed all non-H atoms. H atoms determined by a difference Fourier synthesis. All coordinates, anisotropic thermal parameters for non-H atoms and isotropic ones for H refined by block-diagonal least-squares procedure to minimize  $\sum w(|F_o| - |F_c|)^2$ , w = 1.0; final R = 4.8%, S = 0.83,  $(\Delta/\sigma)_{max} = 0.3$  for non-H atoms. Final residual electron density of difference Fourier synthesis <0.27 e Å<sup>-3</sup>. Atomic scattering factors from *International Tables for X-ray Crystallography* (1974). Calculations performed on a FACOM M-200 computer at the Computer Center of Kyushu University using *UNICS*III program system (Sakurai & Kobayashi, 1979).

 Table 1. Fractional atomic coordinates with their e.s.d.'s in parentheses and equivalent isotropic thermal parameters

$$B_{\rm eq} = \frac{1}{3} \sum_i \sum_j B_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

|       | Molecule A  |             |            |                     | Molecule B  |            |            |               |  |
|-------|-------------|-------------|------------|---------------------|-------------|------------|------------|---------------|--|
|       | x           | У           | Ζ          | $B_{eq}(\dot{A}^2)$ | x           | у          | Ζ          | $B_{eq}(Å^2)$ |  |
| C(1)  | 0.2551 (3)  | -0.0895 (2) | 0.7748 (3) | 2.2                 | 0.0025 (3)  | 0.3452 (2) | 0.6732 (3) | 2.9           |  |
| C(2)  | 0.2470 (3)  | -0.0256 (2) | 0.9259(3)  | 2.3                 | -0.0167 (3) | 0.4604 (2) | 0.7360 (3) | 2.9           |  |
| C(3)  | 0.2875 (3)  | 0.0765 (2)  | 0.9529 (3) | 2.3                 | -0.1342 (3) | 0.5189 (2) | 0.6312 (3) | 2.6           |  |
| C(4)  | 0.3706 (3)  | 0.0916 (2)  | 0.8613 (3) | 2.2                 | -0.1851 (3) | 0.4689 (2) | 0.4721 (3) | 2.5           |  |
| C(5)  | 0.4095 (3)  | 0.1868 (2)  | 0.8806 (3) | 2.9                 | -0.2984 (3) | 0.5191 (2) | 0.3698 (3) | 3.4           |  |
| C(6)  | 0-4991 (3)  | 0.1989 (2)  | 0.8054 (3) | 3.4                 | -0.3358 (3) | 0.4765 (3) | 0.2183 (4) | 3.9           |  |
| C(7)  | 0.5515 (3)  | 0.1154 (2)  | 0.7119 (3) | 3.3                 | -0.2588 (3) | 0.3835 (3) | 0.1689 (3) | 3.6           |  |
| C(8)  | 0-5153 (3)  | 0.0192 (2)  | 0.6914 (3) | 2.8                 | -0.1447 (3) | 0.3320 (2) | 0.2677 (3) | 2.9           |  |
| C(9)  | 0.4249 (3)  | 0.0073 (2)  | 0.7668 (3) | 2.2                 | -0.1078 (3) | 0.3740 (2) | 0.4203 (3) | 2.4           |  |
| C(10) | 0.1233 (3)  | 0.0634 (2)  | 0.8918 (3) | 2.2                 | -0.1650 (3) | 0.4885 (2) | 0.7605 (3) | 2.7           |  |
| C(11) | 0.0326 (3)  | 0.1124 (2)  | 0.9938 (3) | 2.8                 | -0·2001 (4) | 0.5739 (2) | 0.8794 (3) | 3.5           |  |
| C(12) | 0.0546 (3)  | 0.0436 (2)  | 0.7271 (2) | 2.0                 | -0.2225 (3) | 0.3908 (2) | 0.7248 (3) | 2.9           |  |
| C(Me) | 0.4875 (4)  | -0.2524 (3) | 0.6400 (4) | 4.8                 | 0.1774 (3)  | 0.1769 (3) | 0.4706 (4) | 4.0           |  |
| N(1)  | 0.3965 (2)  | -0.0916 (2) | 0.7583 (2) | 2.3                 | 0.0149 (2)  | 0.3262 (2) | 0.5225 (2) | 2.6           |  |
| N(2)  | 0.1340 (2)  | -0.0377 (2) | 0.6669 (2) | 2.2                 | -0.1293 (3) | 0.3150 (2) | 0.6736(3)  | 3.2           |  |
| O(1)  | 0.3980 (2)  | -0.1556 (1) | 0.6154 (2) | 3.1                 | 0.0310(2)   | 0.2165(1)  | 0.4709 (2) | 3.2           |  |
| O(2)  | -0.0994 (2) | 0.1624 (2)  | 0.9340 (2) | 3.6                 | -0.3130(3)  | 0.5679 (2) | 0.9191 (3) | 5.2           |  |
| O(3)  | 0.0748 (2)  | 0.1077 (2)  | 0.1241 (2) | 4.2                 | -0.1341 (3) | 0.6448 (2) | 0.9368 (3) | 5.4           |  |
| O(4)  | -0.0610 (2) | 0.0938 (1)  | 0.6601 (2) | 2.6                 | -0.3355 (3) | 0.3842 (2) | 0.7458 (3) | 4.3           |  |

Table 2. Bond lengths (Å) and angles (°) with their e.s.d.'s in parentheses

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Molecule<br>A | Molecule<br>B |                  | Molecule Molecule $A B$ |               | Molecule<br>A | Molecule<br>B |              | Molecule<br>A | Molecule<br>B    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|------------------|-------------------------|---------------|---------------|---------------|--------------|---------------|------------------|
| C(1) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.518 (4)     | 1.522 (4)     | C(3) - C(10)     | 1.562 (4) 1.564 (5)     | C(8) - C(9)   | 1.396 (5)     | 1.395 (4)     | C(11) - O(3) | 1.203 (4)     | 1.203(4)         |
| C(I) = N(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.455 (4)     | 1.463 (4)     | C(4) - C(5)      | 1.392 (4) 1.388 (4)     | C(9) - N(1)   | 1.421(4)      | 1.417(3)      | C(12) - N(2) | 1.322(3)      | 1.324(4)         |
| C(1) = N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.464(3)      | 1.461(5)      | C(4) - C(9)      | 1.395 (4) 1.401 (4)     | C(10) - C(11) | 1.488(4)      | 1.481(4)      | C(12) = O(4) | 1.241(3)      | 1.231 (5)        |
| C(2) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.476 (4)     | 1.477(4)      | C(5) - C(6)      | 1.389 (5) 1.388 (4)     | C(10) - C(12) | 1.487 (3)     | 1.488(4)      | C(Me) = O(1) | 1.428 (4)     | 1.418 (4)        |
| C(2) - C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.514 (4)     | 1.509(4)      | C(6) - C(7)      | 1.376(4) $1.374(5)$     | C(11) = O(2)  | 1.326(3)      | 1.327(6)      | N(1) = O(1)  | 1.438(3)      | 1.438 (3)        |
| C(3) - C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.482 (5)     | 1.480 (4)     | C(7)-C(8)        | 1.391 (4) 1.382 (4)     | 0(11) 0(1)    | (-)           |               | ,,           |               |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | Molecule      | Molecule         |                         | Molecule Mo   | olecule       |               |              | Molecule      | Molecule         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | A             | В                |                         | A             | B             |               |              | Α             | В                |
| C(2) - C(1) - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N(1)          | 109.7 (2)     | 109.6 (3)        | C(4) - C(5) - C(6)      | 120.9 (3) 12  | 1.0 (3)       | C(11)-C       | (10) - C(12) | 120.6 (2)     | 120.4 (3)        |
| C(2) - C(1) - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N(2)          | 104.3 (2)     | 104.0 (2)        | C(5) - C(6) - C(7)      | 119-6 (3) 119 | 9.4 (3)       | C(10)-C       | (11) - O(2)  | 116.6 (2)     | 115.0 (3)        |
| N(1)-C(1)-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N(2)          | 112.5 (3)     | $112 \cdot 2(2)$ | C(6) - C(7) - C(8)      | 120.8 (3) 12  | 1.0 (3)       | C(10)-C       | (11) - O(3)  | 122.7(2)      | 123.9 (4)        |
| C(1) - C(2) - | C(3)          | 111.9 (3)     | 112.0(2)         | C(7) - C(8) - C(9)      | 119.6 (3) 119 | 9.8 (2)       | O(2) - C(     | 11) - O(3)   | 120.8 (3)     | $121 \cdot 1(3)$ |
| C(1) - C(2) - | C(10)         | 105.4 (2)     | 105.6 (3)        | C(4) - C(9) - C(8)      | 120.1 (3) 119 | 9.8 (2)       | C(10)-C       | (12) - N(2)  | 108.6 (2)     | 108.3 (3)        |
| C(3) - C(2) - | CÙD           | 63.0(2)       | $63 \cdot 1(2)$  | C(4) - C(9) - N(1)      | 118.9 (3) 119 | 9.2(2)        | C(10)-C       | (12) - O(4)  | 124.8 (2)     | 124.2(3)         |
| C(2) - C(3) - | 2(4)          | 118.4(2)      | 118.8 (2)        | C(8) - C(9) - N(1)      | 120.8 (2) 120 | 0.8(2)        | N(2) - C(     | 12) - O(4)   | 126.6 (2)     | 127.5 (3)        |
| C(2) - C(3) - |               | 59.7 (2)      | 59.4(2)          | C(2) - C(10) - C(3)     | 57.3(2) 5'    | 7.5(2)        | C(1) - N(     | 1) - C(9)    | 113.7(2)      | 114.0(2)         |
| C(4) - C(3) - | 2(10)         | 124.2(2)      | 124.0(3)         | C(2) - C(10) - C(11)    | 121.6 (3) 122 | 2.8(3)        | C(1)-N(       | 1) - O(1)    | 106.6(2)      | 106.1(2)         |
| C(3) - C(4) - | C(5)          | 120.7(2)      | $121 \cdot 2(2)$ | C(2) - C(10) - C(12)    | 106.6 (2) 100 | 6.8(2)        | C(9) - N(     | 1) - O(1)    | 110.1(2)      | 109.0(2)         |
| C(3) - C(4) - | 2(9)          | 119.8 (3)     | 119.5(2)         | C(3) - C(10) - C(11)    | 116.7 (2) 110 | 6.7(3)        | C(1)-N(       | 2) - C(12)   | 114.7(2)      | 115.1 (3)        |
| C(5) - C(4) - | 2(9)          | 119.1 (3)     | 119.0(2)         | C(3) - C(10) - C(12)    | 117.8 (3) 11  | 7.0(2)        | C(Me)-C       | D(1) - N(1)  | 108.2 (2)     | 109.3 (2)        |

**Discussion.** Atomic coordinates and equivalent isotropic thermal parameters for the non-H atoms are given in Table 1.\* There are two pairs of racemic molecules in the unit cell as shown, together with the atom-numbering scheme, in Fig. 2. The four molecules of groups A and B are held together around the center of symmetry  $(\frac{1}{2},0,\frac{1}{2})$  by two paired hydrogen bonds  $O(4A)\cdots H(N2A)$  and  $O(4A)\cdots H(N2B)$  with distances of 2.06 (3) and 2.09 (3) Å. Although the molecule has a flexible methoxy tail, these four molecules form a close-packed cluster via the four hydrogen bonds. The clusters are held together by van der Waals forces to form the crystal.

The unique molecules A and B in the asymmetric unit have almost the same conformation, as shown in Table 2. Fig. 3 shows a stereoview of molecule A drawn with *ORTEP* (Johnson, 1965). The molecule consists of three condensed rings: quinolinium, three-membered and lactam. The hydroxy radical in the carboxy group

\* Lists of structure factors, H-atom parameters, anisotropic thermal parameters and bond distances and angles related to H atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38785 (28 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.



Fig. 2. Crystal structure projected along the *c* axis. Dotted lines represent hydrogen bonds.



Fig. 3. Stereoview of molecule A.

at the junction between the lactam and three-membered rings is connected to the carbonyl O of the lactam ring by an O(4)...H(O2) intramolecular hydrogen bond with distances of 1.87 (4) and 1.70 (4) Å for molecule A and B respectively. For both molecules, the bond distances of C(12)-N(2) are shorter and those of C(12)-O(4) are longer than normal values as shown in Table 2. It seems likely that the lone-pair electrons of N(2) are strongly conjugated with the carbonyl group and those of O(4) cause the formation of the inter- and intramolecular hydrogen bonds.

The dihedral angle between the quinolinium and lactam rings is  $102^{\circ}$  for both molecules A and B. As shown in Table 2, the three-membered rings are considerably distorted from a regular triangle and have bond lengths and angles differing from those reported by Guggenberger & Jacobson (1969), Jones & Karle (1974), Bordner (1976) and Guth & Deppisch (1976) for other three-membered rings. These distortions are mainly caused by steric repulsions at the junction between the lactam and quinolinium rings. The bond lengths and angles in molecules A and B are mostly normal except for those of the lactam and three-membered rings.

## References

- BORDNER, J. (1976). Crvst. Struct. Commun. 5, 283-286.
- GUGGENBERGER, L. J. & JACOBSON, R. A. (1969). Acta Cryst. B25, 888-894.
- GUTH, H. & DEPPISCH, B. (1976). Cryst. Struct. Commun. 5, 287-292.
- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72–98. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- JONES, D. S. & KARLE, I. L. (1974). Acta Cryst. B30, 617-623.
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- SAKURAI, T. & KOBAYASHI, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69–77 (in Japanese).